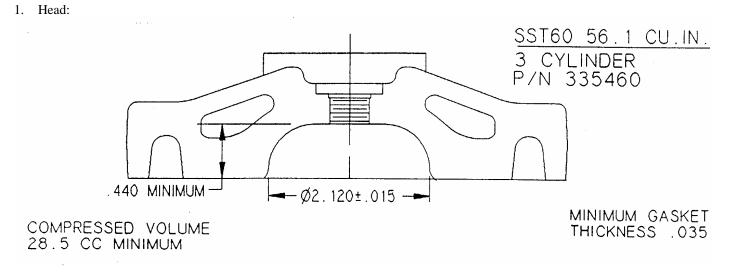


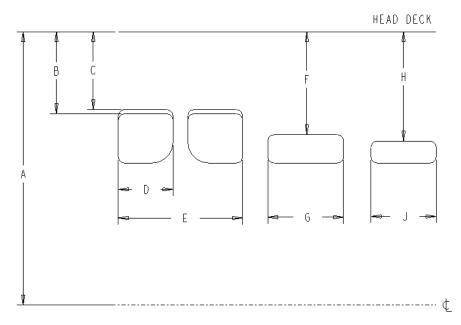

RACE CLASS: SST-60

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MANUFACTURER							OMC		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{c c} \mbox{CLASS: DISPLACEMENT MAX} & \mbox{in}^3 & \mbox{SST-60; 56.1} \\ \hline \mbox{NUMBER OF CYLINDERS} & 3 \\ \hline \mbox{MIN. VOLUME OF COMBUSTION CHAMBER} & \mbox{cm}^3 & \mbox{28.5} \\ \hline \mbox{MIN. VOLUME OF COMBUSTION CHAMBER} & \mbox{cm}^3 & \mbox{28.5} \\ \hline \mbox{(INC L SPARK PLUG HOLE)} & \mbox{cm}^3 & \mbox{28.5} \\ \hline \mbox{(INC L SPARK PLUG HOLE)} & \mbox{cm}^3 & \mbox{28.5} \\ \hline \mbox{CARBURETOR} & \mbox{VENTURI} & \mbox{\pm.015$ in} & \mbox{1.250} \\ \hline \mbox{QUANTITY PRE ENGINE} & \mbox{3} \\ \hline \mbox{QUANTITY PRE ENGINE} & \mbox{4.000} \\ \hline \mbox{K DECK HEIGHT} & \mbox{\pm.001$ in} & \mbox{3.187} & \mbox{$+$.030 OEM Piston} & \mbox{Approved} \\ \hline \mbox{M PORT HEIGHT} & \mbox{\pm.001$ in} & \mbox{3.2600} & \mbox{$-$.030$ in} & \mbox{2.600} \\ \hline \mbox{M PORT HEIGHT} & \mbox{\pm.030$ in} & \mbox{2.600} & \mbox{$-$.030$ in} & \mbox{2.600} \\ \hline \mbox{M PORT HEIGHT} & \mbox{\pm.030$ in} & \mbox{2.600} & \mbox{$-$.030$ in} & \mbox{2.60} & \mbox{$-$.030$ in} & $	ADVERTISED SALES NAME									
NUMBER OF CYLINDERS Im 3 MIN. VOLUME OF COMBUSTION CHAMBER (INC'L SPARK PLUG HOLE) cm ³ 28.5 CARBURETOR VENTURI ±.015 in 1.250 CARBURETOR BORE ±.015 in 1.500 QUANTITY PER ENGINE 3							2			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						R	cm ³	28.5		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					VENTURI	± .015	in	1.250		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					BORE	±015	in	1.500		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					QUANTITY PER ENGINE			3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		G CYLINDER F			DRE	±.005	in	3.187	+.030 OEM Piston	Approved
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		J	J PISTON ST		KE	±011	in	2.344		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L	ROD LENGT			±.006	in	4.000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Κ				±012	in	6.375	6.363 Min	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F			ТН	±030	in	2.600		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		М	PORT HEI	GHT		±030	in	2 @ 1.220		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		PORTS PER		Α	TRANSFER			3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NS N			В	EXHAUST			2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	õ			С	PISTON					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4T)			А	TRANSFER	±.035	In	2 @ 0.545; 1 @ 6.15		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IC /		PORT		EXHAUST	±.035	In	.918 (plus chamfer)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Η	HEIGHT		B ₁	EXHAUST	±.035	In	1.485	1.393 min. to Chamfer	See note # 3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	EC			С	PISTON	±.035	In			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SP	-		Α	TRANSFER	± 2°	ATC	2 @ 118°; 1 @ 120°	See note # 4	
(ONE CYLINDER) REED THICKNESS ±.001 In .010 Steel or Blue 2 Stage Glass See note # 6 H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460	Q			В	EXHAUST	± 2°	ATC	94°		
(ONE CYLINDER) REED THICKNESS ±.001 In .010 Steel or Blue 2 Stage Glass See note # 6 H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460	EA			С	PISTON	± 2°	ATC			
(ONE CYLINDER) REED THICKNESS ±.001 In .010 Steel or Blue 2 Stage Glass See note # 6 H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460	LΗ	REED		# O	F PORTS			6		
(ONE CYLINDER) REED THICKNESS ±.001 In .010 Steel or Blue 2 Stage Glass See note # 6 H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460	POWER					MAX	In	1.42x0.675	See note # 5	
(ONE CYLINDER) REED THICKNESS ±.001 In .010 Steel or Blue 2 Stage Glass See note # 6 H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460		BLOCK (ONE	RE	ED MAT'L	•					
H REED STOP HGT. MAX In .280 See notes # 2 & # 6 Y CHECKING DIS. ±.030 In 1.460			RE	ED THICKNESS	±.001	In		See note # 6		
				Н	REED STOP HGT.	MAX	In		See notes # 2 & # 6	
FLYWHEEL MIN Lbs 10.0				Y	CHECKING DIS.	±.030	In	1.460		
				FL	YWHEEL	MIN	Lbs	10.0		
WEIGHT (ONE SET) WRIST PIN, SPACERS, BEARINGS MIN Lbs 1.75		(ONE SET)		WR	IST PIN, SPACERS,	MIN	Lbs	1.75		

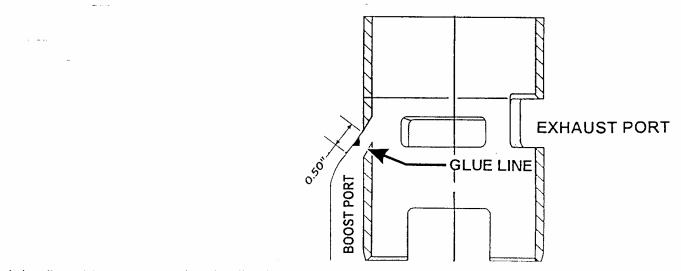
RACE CLASS: SST-60



ΜΔΝ	UFACT	URFR			OMC			
MANUFACTURER GEARCASE MODEL IDENTIFICATION						GR-39M		
ADVERTISED SALES NAME						JOHNSON /		
110 (LICIDE					EVINRUDE		
						SST-60		
	GEAR	RATIO				15:28		
	Х	EXHAUST TUBE LENGTH-	±.25	in				
		POWERHEAD BASE TO PRIM			7.69			
		TUBE END						
	Q	TORPEDO LENGTH (W/ PRO	MAX	in	19.3			
	R	TORPEDO WIDTH	MIN	in	3.30			
	S	STRUT WIDTH	MIN	in	1.5			
	S ₂	STRUT WIDTH (2" FORWAR	MIN	in				
SZ		TRAILING EDGE						
GEARCASE SPECIFCATIONS	W	DIS. FROM PROPSHAFT TO	±.2	in	6.25			
ΓL		CAVITATION PLATE						
ç	Y	LENGTH OF SKEG FROM	±.2	in	6.40			
CIE		PROPSHAFT						
ΡE	Z	TORPEDO LENGTH	±.2	in	14.125			
S	V	PROPSHAFT CENTERLINE	LONG	±.2	in			
ASE		TO POWERHEAD BASE	SHAFT					
2			SHORT	±.2	in	23.5		
AR	••	SHAFT					a 1 1 a	
GE	Y ₁	SKEG THICKNESS	MIN	in	.16	See note # 10		
-	Y ₂	SKEG THICKNESS	MIN	in	.200	See note # 10		
	Y ₃	SKEG THICKNESS	MIN	in	.240	See note # 10		
	Z ₁	SKEG CORD LENGTH	±.2	in	4.90	See note # 10		
	Z ₂	SKEG CORD LENGTH	±.2	in	5.80	See note # 10		
	Z ₃	SKEG CORD LENGTH	±.2	in	6.60	See note # 10		
	DIA	PROPSHAFT DIA	±.01	in	.875			


WARNING! FOR INSPECTION ONLY! These specifications are not intended as a guide for modification or "blueprinting" and are subject to change as needed.

SST-60 NOTES


- 2. Incorporates .012 shims under one or both reed stops.
- 3. Ports are machined at timing edge. Cylinder passages are as cast and may have mismatch at sleeve. B_1 dimension to top of chamfer = 1.393 minimum.
- 4. Port timing tolerance on boost port = $+4^{\circ}/-2^{\circ}$
- 5. Dimensions for center port =1.450 long x .675 wide (maximum).
- Standard SST 60 reed is steel .010 thick and reed stop height is H=.280 maximum.
 Alternate reed for SST-60 may be used: OMC P/N 568428, bottom reed = .028±.003; top reed .017±.003, H = .300 maximum.
- 7. Early production piston length is $2.500 \pm .030$.
- 8. Water pump: A plastic outer with 1 piece steel inner utilizes a 3 blade impeller, while the 2 piece steel inner utilizes a 6 blade impeller.
- 9. SST-60 may or may not have two through holes in the piston at the exhaust bridge for oiling.
- 10. Or per OMC P/N 568295 Templet Kit.
- 11. Can only use Foam Mold block.
- 12. RaPair replacement ignition parts are approved P/N: Stator 173-3724, Trigger 113-2115, Rectifier 153-3408, Coil 183-2508, Power Pack 113-2115.
- 13. For ease of inspection, see table below for measuring ports from the Top Deck to the Top of the Ports.

SST-60 NOTES

	Port Measurements from Block Top Deck down to Top of Port			
	SST 60	Minimum	Maximum	
		Inches	Inches	
А	Deck Height	6.363	6.387	
В	Exhaust Port	1.450	1.520	
С	Exhaust Port Chamfer	1.393	1.465	
D	Exhaust Port Width per port		1.075	
Е	Exhaust Port Width overall			
F	Transfer Port	1.825	1.890	
G	Transfer Width		1.580	
Н	Boost Port	1.860	1.950	
J	Boost Port Width		1.255	

14. Liner:

It is allowable to remove the glue line in the casting of the Boost Port only as diagramed. The cas aluminum surface may be ground to match up with the machined edge of the sleeve. You are allowed to grind back into the Boost Port ½ inch on all sides. If grind marks extend past ½ inch into the port, your motor will be illegal. The intent is to remove<u>only</u> the glue line and the mismatch with the sleeve, the port shape and angle are to remain stock appearing. The sleeve cannot be altered or modified in any way

Date:46-27-2007 Model Year:

SST 60 Technical Standards

Max. Total Cu. In.	Minimum	Minimum
Displacement	Boat Length	Boat Weight
56.1 (920cc)	14'	825 Lbs.

Minimum Age requirements 16

Total Cu. Ft. of Foam	Cu. Ft. of	Foam in
in Boat, Including	Reinforced	Cockpit
Cockpit	Structure,	If So Equipped

SST 60 5.5 CF 3.5 CF

SST 60 Boat Standards (see also Rule 18)

- (1) Any design of boat including bottom, deck, cockpit openings and seating arrangements shall be permissible so far as boat meets minimum length.
- (2) Power trim and/or adjustable spoilers shall be allowed in SST 60 classes.
- (3) SST 60 classes can change engine wiring to allow 24-volt starting system.
- **SST 60 Motor Standards** (see also Rule 20)
 - (1) All cowling and engine graphics and colors shall be essentially the same as OEM, with updating to later models allowed only as a complete OEM design.
 - (2) The SST 60 classes' gearcases may have their outside surfaces contoured, however they must meet the requirements of the OPC Engine Specification sheets (only). The outside surfaces of the gearcases may be either painted or unpainted. If they are painted, the color of the paint must be the same as the original factory motor color. If the gearcases are unpainted, any surface finished is acceptable.
 - (3) SST 60 class may use alternate plastic reeds OMC part number 568428.
 - (4) SST 60 class may replace up to three sleeves with OMC replacement sleeves or Advanced sleeves.

(5) Glue line may be removed on "Boost Port" only. (The Motor Technical Committee established the specifications printed on the inspection sheet).